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Abstract—Predicting which part of a scene elderly people
would pay attention to could be useful in assisting their daily
activities, such as driving, walking, and searching. Many com-
putational models for predicting focus of attention (FoA) have
been developed. However, most of them focus on mimicking adult
FoA and do not work well for predicting elderly’s, due to age-
related changes in human vision. Is it possible to leverage the
prediction results made by an FoA model of general adults to
accurately predict elderly’s FoA, rather than training a new
network from scratch? In this paper, we consider a novel problem
of translating adult’s FoA to elderly’s and propose an approach
based on deep image-to-image translation. Our model is trained
by minimizing both Kullback-Leibler divergence and adversarial
loss to approximate the joint probability distribution of adult and
elderly FoA. Experiments on two datasets demonstrate that our
model gives remarkable prediction accuracy.

I. INTRODUCTION

The world’s population is ageing. For instance, in Japan,
which is considered to have the highest percentage of elderly,
seniors accounted for 25% of the total population in 2015, and
this trend is likely to continue; It is expected to reach 30%
of the population by 2025 and nearly 40% by 2055. Given
the scale and the trend of the situation, there will be a great
demand for AI systems that can monitor and support the daily
activities of the elderly. Our work in this paper aims to develop
a computer vision system that predicts the focus of attention
(FoA) of the elderly to support various daily activities such as
driving, walking, and searching.

Computational models of saliency [1] are frequently used
to predict FoAs when people are watching the scene. Signifi-
cant efforts have been made on developing effective saliency
models. The early attempts including the seminal work by Itti
and Koch [1] developed bottom-up models of saliency based
on hand-crafted image features. Considering the difficulty of
designing effective hand-crafted features that can capture a
variety of human FoAs, modern approaches rely on deep
learning to obtain an end-to-end mapping from the input image
to the FoA map. For example, [2] used a Convolutional Neural
Network (CNN) to learn effective features from data and to
make FoA predictions with the help of prior information.
[3] proposed a model based on a 3D convolutional neural
network called C3D to model FoAs in car driving scenarios.
[4] proposed to use convolutional Long-Short Term Mem-
ory (LSTM) network to iteratively refine the predicted FoA
maps. [5] also proposed a sequential CNN-LSTM model for
video saliency estimation. However, one drawback of existing
models are focused on and evaluated for adult’s FoA, hence
cannot work well for the prediction of elderly’s. Indeed, it has
been claimed that aging process adversely affects the saccadic

eye-movement functioning, which results in crucial changes in
scene viewing behaviors [6]. Furthermore, some studies [7],
[8] suggest that human FoA significantly changes with aging.

Motivated by these observations, in this paper, we propose
a FoA prediction model targeted to elderly. A straightforward
approach would be to train a prediction model, e.g., CNN,
on the eye-gaze data of elderly participants from scratch.
However, collecting a sufficient amount of training data of
elderly’s FoAs to train a brand new deep CNN is challenging
due to their physical or health conditions.

We consider a new framework to provide a data-efficient
approach for training a model of elderly’s FoAs. Although
the FoAs by adults and elderly generally look quite different
as we will show later in Fig. 2, their tendencies can still
be well characterized by the scene they watch. Aiming at
leveraging the correlations between the adults’ and elderly’s
FoAs, we propose a deep image-to-image translation approach.
Given a scene, our method translates the FoA map of adults
predicted by a state-of-the-art method for the adults, e.g., [3],
[2], to that of the elderly’s. Our translation model is obtained
by an encoder-decoder-type deep CNN. The training of our
model is performed to minimize the Kullback-Leibler (KL)
divergence between the ground truth and predicted FoA maps
of elderly. Moreover, we aim at simultaneously minimizing the
adversarial loss so that the model can capture the underlying
correlations between the FoAs of adults and elderly for the
scene in the form of joint probability distribution. Although a
few recent attempts consider age-dependent saliency models
[9], [10], this is the first work that introduces the image-
to-image translation framework to the age-dependent FoA
prediction task, to the best of our knowledge. We construct two
datasets covering both of adults’ and elderly’s FoA maps in
two different scenarios, i.e., task-based viewing while driving
on a car driving simulator and free-viewing while walking
on a crowded street. Evaluation experiments on both datasets
show that our model gives remarkable prediction accuracy for
elderly’s FoA.

II. METHODS

First of all, we briefly explain our problem considered in
this paper. Given a sequence of video frames, our task is to
predict which part of each frame an elderly person would pay
attention to while driving a car or walking on a street. More
concretely, given a sequence of k successive frames denoted
by Fn = {fn−k+1, f2..., fn}, our task is to predict the FoA
on fn. The FoA is predicted in the form of the probability
of how likely each pixel of fn is attended by an observer. We
denote the predicted FoA of elderly and adults for fn by en and



Input Frames

Predicted map

C

Input

B
N

R
eL

u

C
o

n
v.

Encoder

B
N

R
eL

u

C
o

n
v.

Decoder

𝓛KL
(KL Loss)

Predicted Map

Target Map

Adult/elderly pair Encoder

Si
gm

o
id

Guess (1/0)

𝓛Adv
(Adversarial

- Loss)

Ground Truth

Predictor

Discriminator

Translator

B
N

R
eL

u

D
ec

o
n

v.

B
N

R
eL

u

D
ec

o
n

v.

B
N

R
eL

u

C
o

n
v.

B
N

R
eL

u

C
o

n
v.

Fig. 1. Overview of our proposed network. The translation framework mainly consist of two major networks; translator and discriminator. Translator
receives adult’s FoA concatenated with the corresponding RGB frame as a input, where the adult’s FoA is predicted by the predictor network which is a
state-of-the-art method of adult’s FoA prediction.

an, respectively. The ground truth FoA of elderly observers is
denoted by e∗n.

We approach to the task in two steps; we first predict the
adult’s FoA an, and then transform it to the elderly’s FoA en.
The schematic overview of our model is illustrated in Fig. 1. In
the first step, given an input sequence of a video, the adult’s
FoA an is predicted by using a predictor network which is
trained on a large fixation data of adult observers. While there
are a lot of existing methods that can predict the adult’s FoAs,
we in this work specifically use the state-of-the-art models,
namely [3] or [2], depending on evaluation scenarios we will
describe later in Sec. IV. In the second step, the translator
network is used to get the elderly’s FoA map en from both
of the current video frame fn and the predicted adult’s FoA
an by the predictor network. We use another network called
discriminator network only for training to facilitate the training
of the translator network in an adversarial learning framework.
The task of the discriminator is to judge if the input, i.e., en
or e∗n, is the one produced by the translator network (“fake”)
or not (“real”).

Hereafter, we first give the details of our translator and dis-
criminator networks and then describe our training procedure.

A. Model Configurations

Our translator and discriminator networks are both based on
CNNs. The specific configurations are given as follows.

Translator Network. The translator network has a simple
encoder-decoder architecture. After receiving a concatenated
input of the current RGB video frame fn and the corresponding
adult’s FoA an, the encoder applies a sequence of convolution
layers to reduce the spatial size of the input, and the decoder
applies a sequence of deconvolution layers to recover the
original resolution. The encoder/decoder is designed to have
eight 4 × 4 convolution/deconvolution layers, each followed
by the rectified linear activation (ReLU) function. The first

three layers of the encoder are consisted of 64, 128, and 256
channels, respectively, whereas the fourth to the last layers
consist of 512 channels for each. The decoder is designed to
have an almost symmetrical structure with the encoder, i.e.,
each of the first five layers of it has 512 channels and the
following three have 256, 128, and 1 channels, respectively.
In order to improve the quality of the generated images, the
idea of skip connections [11] which directly connects each of
the intermediate encoder layers to the decoder layer having
the same spatial resolution is adapted. The skip connections
provide an option of by-passing the encoder/decoder part if it
doesn’t have a use for it.

Discriminator Network. The discriminator is used to improve
the translator network in the training process (we will give the
detail in Sec. II-B). This is to judge if the provided input is
“fake” or “real”, i.e., if it is generated by the translator or
not. It receives a combination of the two inputs; an adult’s
FoA an and predicted en or ground truth elderly’s FoA e∗n.
It applies five convolution layers followed by ReLU, except
for the last layer where a sigmoid function is used instead
of ReLU. There are 64, 128, 256, and 512 channels used for
the first to the fourth layers, respectively. Following the idea
of PatchGAN proposed in [12], the discriminator outputs the
patch-level confidence of the classification result.

B. Model Training

Let us denote translator and discriminator networks as T
and D, respectively. Overall, we train these two networks
in a unified training framework that solves the following
optimization problem with respect to their parameters.

min
T

max
D

LAdv(T,D) + λLKL(T ). (1)

This objective is consisted of two major loss terms; content
loss LKL and adversarial loss LAdv. The translator T tries
to minimize the objective through the gradient decent, while
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Fig. 2. Data collection setup. Left: Setup for Driving Dataset collection. The eye-gaze of participants were recorded by three eye-trackers (in red circle)
while driving on a simulator shown in the figure. Right: Setup for Street Video Dataset collection. Examples of the scenes and resulting FoA maps of adult’s
and elderly’s are shown in the bottom part.

the discriminator D tries to maximize it with gradient ascent.
Below we give the details of each term one-by-one.
Content Loss. The content loss requires the translator network
T to output the ground truth FoA e∗n in per pixel bases by
comparing the predicted FoA of elderly en = T (an) with
e∗n. Denote by en,i and e∗n,i the i-th pixel of en and e∗n,
respectively. Considering that en,i and e∗n,i are both probability
values, the most appropriate form of the loss function would
be the KL-divergence which allows to directly compare the
two probability distributions.

LKL(T ) =
∑
n

∑
i

e∗n,i(log(e
∗
n,i)− log(en,i)) (2)

Adversarial Loss. As explained in the introduction, the as-
sumption behind our approach is that the tendencies of FoAs
by adults and elderly are characterized by the scene. The
content loss defined above only aims at approximating the
conditional distribution of e∗n with given Fn, i.e., p(e∗n;Fn),
which may not fully capture the underlying correlation be-
tween en and an. Hence, we introduce an additional loss to
explicitly model the joint distribution p(an, e∗n;Fn). This can
be achieved by the generative adversarial learning [11], which
is specifically formulated as follows.

LAdv(T,D) = E(an,e∗n)∼p(an,e∗n;Fn)[logD(an, e
∗
n)]

+Ean∼p(an;Fn),en∼p(en|an;Fn)[1− logD(an, en)] (3)

By minimizing this with respect to the translator network T
under the assumption that the ideal discriminator network D∗

is given, T is trained so that the distribution p(an, en;Fn) =
p(an;Fn)p(en|an;Fn) matches the desirable joint distribution
p(an, e

∗
n;Fn) in terms of Jensen-Shannon divergence. This is

approximately achieved by an alternating update of T and D.

III. DATASET CREATION

We describe our datasets used in our experiments described
in the next section.

Many benchmark datasets for image/video-based FoA esti-
mation have been developed consisting of ground truth FoA

maps build by aggregating fixations of several observers for an
image1. However, observers of these datasets are restricted to
a certain age group, typically around 18-35 years old, which
cannot be used for the purpose of this research that focuses
on elderly’s FoAs.

We therefore construct two new datasets that cover both of
the adults and elderly observers to evaluate our model. We
consider two different scenarios, namely task-based viewing
and free-viewing. The first dataset is called Driving Dataset,
which was collected under one of the most important applica-
tions of FoA estimation, a car driving scenario. The second one
is called Street Video Dataset which is created to simulate
free-viewing on a street.

The details of the dataset creation process are described
below.

A. Participants

For both datasets, 18 observers belonging to two different
age groups, adults and elderly, were recruited (9 observers in
each group). The adult and elderly observers had mean age of
26 and 75 years, respectively. The number of observers in our
experiment is almost consistent with several previous studies
[14], [15], [16], [13], [17], where the total number of observers
ranges from 8 to 15 for each image. All the observers were
driving licence holders for more than five years and had normal
or corrected to the normal vision.

B. Driving Dataset

Each observer was asked to use a driving simulator and
to safely drive a car to reach a certain destination. Our
simulator is the same as the one used in [18] to analyze
the drivers’ behaviors2. The simulator shows each participant
a video sequence consisting of 10, 000 frames of a road

1For example, a comprehensive list of available datasets can be found at
[13].

2To accurately simulate real driving scenarios, the simulator consists of
brake and accelerator pedals, an electric steering system with a torque
generator, and a stereo sound system to provide sounds. See [18] for more
details.



environment. The video was designed in a way that it includes
different contexts in terms of landscape and traffic conditions.
Specifically, each video frame shows different types of objects
such as roads, pedestrians, traffic signs, and cars. A gaze
tracking system called Smart-Eye is used to record the gaze
movement of each participant while driving in real time. The
setup is shown in Fig. 2.

While the same road environment is used for all the par-
ticipants and they drove in the same road, the two drivers
cannot experience the same scene at the same time due to the
differences in the driving speed. More specifically, two drivers
can not be at the same time to the same place on the road. This
imposes a temporal alignment problem of the frames for the
videos of all the 18 observers. To resolve this issue, we use the
dynamic time warping (DTW) technique to find the alignments
of each of 17 videos to a remaining one which we call
reference video. As a result, all the 17 videos got temporally
aligned with respect to the reference video. After the temporal
alignment, the recorded fixations of participants in each age
group are overlaid frame-by-frame, which provide us two FoA
maps for each video frame showing places attended by two age
groups of adults and elderly, respectively. Besides, FoA maps
of each observer’s are obtained by convolving a Gaussian filter
to each fixation point as in the standard protocol for saliency
estimation experiments [13].

Consequently, we obtained 9, 713 continuous FoA maps
correspond to the 9, 713 frames of the video stimuli for both
age groups. We used 7, 716 frames for training and the rest for
testing. Some examples of the adult’s and elder’s FoA maps
corresponding to some video frames are shown in the bottom
of Fig. 2.

C. Street Video Dataset

Unlike Driving Dataset, this dataset was created to repro-
duce the elderly’s FoA trend in a free-viewing scenario, where
the observer has no task in hand. The same participant was
again involved and asked to freely look at the video displayed
on the monitor. The video was shot in first-person view at
a resolution of 1080 × 1980 pixels on a busy street market
with pedestrians and several shops on both sides. We used
a 24 inch display to play the video sequence and an eye-
tracking system called Tobii to record the eye-gaze movement
of each participant while viewing this video from a distance
of approximately 60 cm. The experiment setup is shown in
Fig. 2. The same processes as the case of Driving Dataset are
used to yield FoA maps of each age group. Finally we obtained
4, 425 maps, and 3, 532 are used for training and the rest for
testing. Some examples of the resulting maps are shown in the
bottom of Fig. 2.

IV. EXPERIMENTS

We empirically demonstrate the effectiveness of our frame-
work and compare with existing FoA estimation methods on
both Driving Dataset and Street Video Dataset.

TABLE I
COMPARISON WITH BASELINES ON DRIVING DATASET.

Algorithm CC↑ SIM↑ KL↓ Time (sec.)↓
[19] 0.13 0.22 5.60 6.31
[20] 0.09 0.26 4.90 6.43
[2] 0.26 0.42 9.97 2.71
[3] 0.64 0.53 4.06 7.48
[3] (fine-tuned) 0.66 0.55 3.89 7.48
Ours 0.91 0.79 0.80 7.56

TABLE II
COMPARISON WITH BASELINES ON STREET VIDEO DATASET.

Algorithm CC↑ SIM↑ KL↓ Time (sec.)↓
[21] 0.24 0.49 0.82 4.10
[22] 0.22 0.47 1.00 6.33
[5] 0.27 0.46 2.21 9.23
[2] 0.27 0.47 1.36 2.74
[2] (fine-tuned) 0.58 0.57 0.58 2.74
Ours 0.72 0.71 0.94 2.93

A. Implementation Details

For the predictor network of our model, we used two
existing networks depending on the dataset, specifically, [3] for
Driving Dataset and [2] for Street Video Dataset. The reason
for choosing [3] for Driving Dataset is that it is especially
designed and trained for saliency estimation in a driving
scenario. In contrast, [2] is designed to predict saliency in free-
viewing scenarios, which is suited our Street Video Dataset.
According to their network configurations, the numbers of
input video frames are set to k = 16 and k = 1 for Driving
Dataset and Street Video Dataset, respectively, which are those
used in [3] and [2].

For our translator and discriminator networks, we trained
them from scratch for both datasets during 50 epochs by using
Adam with the learning rate of 2 × 10−4 and momentum of
0.5. The weight for the KL-divergence loss term λ is fixed to
100. Note that only the parameters of the the translator and
discriminator networks are updated during the training, while
those of the predictor network are all fixed with the values pre-
trained on the datasets of adults’ FoAs used in their original
papers [3] and [2].

B. Experiment Setup

To measure the quality of the predicted FoA maps, we
used three popular metrics including Pearson’s Correlation
Coefficient (CC), Similarity (SIM), and KL-Divergence [23].
Higher values of CC and SIM mean better performance, while
lower KL-Divergence is better.

We compare our method with several baselines [5], [19],
[20], [21], [22] including both deep and non-deep methods. In
addition, to prove the effectiveness of our translator network,
we also compared our method with [3] and [2] (which are
used as our predictor network) on Driving Dataset and Street
Video Dataset, respectively. For these two models, we prepared
both pre-trained and fine-tuned versions (with Driving Dataset
and Street Video Dataset, respectively) for fair comparisons.
For running the baslines, we used the codes and pre-trained
weights provided by each author group and freely available
on their project page. We make sure that same hardware
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Fig. 3. Qualitative results. From left to right, input frame, ground truth eldery’s map, predicted FoA maps by ours and the baseline method ([3] or [2]).

TABLE III
ABLATION STUDY.

Algorithm CC↑ SIM↑ KL↓ Time (sec.)↓
Driving Dataset

w/o RGB 0.77 0.68 2.18 7.53
w/ RGB 0.91 0.79 0.80 7.56

Street Video Dataset
w/o RGB 0.64 0.66 1.13 2.89
w/ RGB 0.72 0.71 0.94 2.93

environment is used for each method and hyper-parameters
of these methods are carefully tuned.

C. Quantitative Results

We first report the quantitative performance of our method
evaluated in terms of the quality of the predicted map with
respect to the ground truth map, and, we also record average
test time in predicting eldery’s FoA for a video frame.
Results on Driving Dataset. Results are shown in Table I.
We can see that our model outperforms all the baselines
with significant margins. [20] and [19] poorly perform in this
dataset. The reason is that these methods fully rely on bottom-
up hand-crafted features, which suffers a few bottlenecks such
as feature selection and integration. Furthermore, the bottom-
up guidance of eye movements is less prominent in such a
task-based viewing scenario.

Our method performs better than other deep learning-based
methods [2], [3]. This suggests that even the models trained
with large-scale training datasets of adults’ FoA maps are not
sufficient to accurately predict the elderly’s. We also fine-
tuned the pre-trained model of [3] with our eye-gaze data
of elderly’s in order to do a fair comparison. However, our
model still performs better than the case. This shows that
our model is better trained with a small number of training

data, demonstrating the effectiveness of our approach based
on image-to-image transformation.

We also measure the prediction time of the methods to eval-
uate how much complexity our method adds to the predictor
network which has exactly the same architecture as [3]. The
rightmost column of Table I shows the results. Although our
method is not very fast when compared with all the baselines,
the difference from the [3] is reasonably small. This is because
our translator network is a 2D fully-convolutional network
consisting of only 16 layers with small kernels, which is
fairly compact compared to the predictor network [3] that uses
multiple C3D networks. Ours achieves huge performance gain
with this slight expense of run time. Although [2], basing
on a 2D fully-convolutional network, is the fastest despite
taking a higher resolution image than ours, its accuracy is
not satisfactory on this dataset.

Results on Street Video Dataset. Results on Street Video
Dataset are shown in Table II. We can see that our model on
this dataset also outperforms all the baselines with huge mar-
gins, which demonstrates the generalizability of our method.
Unlike the cases of Driving Dataset, the methods based on
handcrafted features [22], [21] perform relatively well on this
dataset. This is because such bottom-up methods tend to work
better in free-viewing scenarios. However, the gain of ours is
still huge. The methods with deep learning [5], [2] still perform
poorly when compared to ours, as the training data used are
collected from adult participants only. We also compared ours
with the fine-tuned version of [2] with our elderly eye-gaze
data, ours still performs better than the case. The rightmost
column of Table II shows the computation time taken in
predicting FoA for a single frame. Again, the time added by
our translator network is reasonably small compared to the



predictor network [2].

Ablation Study. Besides our full proposed model, we also
tested a variant of our translator network that takes only the
predicted adult’s FoA (without the original RGB video frame)
as its input. This is to understand the significance of context
(RGB frame) while predicting elder’s FoA.

Table III shows that our full model (w/ RGB) is bet-
ter than that does not look at the RGB video frame (w/o
RGB). This may be because ours w/ RGB can capture the
content-dependent interactions to the eldery’s FoA by using
p(en|an;Fn) rather than p(en|an). These results overall show
that the superiority of our approach based on deep image-to-
image translation to the existing methods.

D. Qualitative results

We show qualitative results in Fig. 3. The results show
the remarkable ability of our model in predicting elderly’s
FoA. The examples for Driving Dataset show that our model
accurately mimics the gaze tendency of elderly people, who
tend to focus only on cars in the same lane, whereas the
predicted FoA maps by the most competitive baseline [3] pays
attention to the cars in different lanes and even to the objects
in the environment. These results reflect typical behaviors of
elderly and adults, respectively. A similar trend is seen in the
examples of Street Video Dataset. Ours tends to look only
at a few RoIs of the scenes, which is close to the behaviors
observed in the ground truth images, while [2] covers a larger
area. These results indicate that our method can appropriately
mimic the FoAs of elderly’s.

V. CONCLUSION

In this paper, we attempted to accurately predict the el-
derly’s FoA by introducing a deep image-to-image translation
framework. The proposed model is an encoder-decoder type
network that takes adult’s FoA generated by the state-of-the
art FoA prediction method as an input and translates it to the
elderly’s FoA. The evaluation experiments are performed on
two different datasets to cover both free-viewing and task-
based viewing scenarios. Both qualitative and quantitative
results show that our model can mimic the elderly’s FoAs more
accurately compared with the state-of-the-art baseline methods
originally designed and evaluated for adult’s FoA prediction.

We believe that this paper will open up a new direction of
utilizing image-to-image transformation for FoA estimation.
Our study showed that the gaze tendency of observers of
different age groups can be effectively transformed by a fairly
simple image-to-image transformation network. Exploring ap-
plicability of this framework to other types of human attributes
may also be an interesting future direction of this research.
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