Overview

- **Template Matching**: Find a part of a reference image that matches to a query image.

A desired algorithm should be fast and robust to noise, e.g., background, illumination change, and geometric transformation.

- We propose a **deep reinforcement learning approach**
 - Joint learning of image features and search path: Pick and evaluate only the highly prospective regions of the reference image in a sequential manner.

 ✔ Good balance between speed and accuracy
 ✔ Robust to background clutters and geometric transformations
 ✔ Do not requires any class label or exact pose supervision

Model Architecture

Our model has **Feature Extraction Module** and **Localization Module**

- **Feature extraction module**: Extracts the image features from query and reference image region.
- **Consists of two identical CNNs with the same parameters which have a sequence of five Conv-ReLU layers followed by a global average pooling.**

- **Localization module**: Has an LSTM that sequentially predicts the next window pose based on three external inputs including two image features and current window pose.

This design allows us to jointly learn the search path and effective deep features for matching!

Algorithm Behavior

- **Step 0**: Choose the initial window pose
- **Step 1**: Compare the features between the chosen window and the query
- **Step 2**: Choose the next window pose given the features and the current window pose
- **Step 3**: Repeat until the number of trials reaches the limit

Learning Strategy

Combination of **reward maximization** and **feature loss minimization**

a. **Reward maximization**
 - Get a reward “1” if IoU > 0.5, otherwise “0”
 - Maximize the expected reward based on the policy gradient

b. **Feature loss minimization**
 - Contrastive loss to learn good features for matching

\[
L = \begin{cases}
 d^2(q, g) & \text{if } \text{Success} \\
 \max(0, m - d(q, g))^2 & \text{otherwise}
\end{cases}
\]

\(d(q, g)\): Euclidean distance between query q and reference window g

Datasets

- We use three datasets to evaluate our method.

- **FlickrLogos-32**: 2K training 240 testing

Quantitative Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Transformed MNIST</th>
<th>Transformed+Cluttered MNIST</th>
<th>FlickrLogos-32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours</td>
<td>0.89 (3.8)</td>
<td>0.85 (4.0)</td>
<td>0.34 (26.2)</td>
</tr>
<tr>
<td>[Yacov+, ICCV11]</td>
<td>0.51 (1.1)</td>
<td>0.18 (1.0)</td>
<td>0.10 (5.2)</td>
</tr>
<tr>
<td>[Tali+, CVPR15]</td>
<td>0.56 (90.1)</td>
<td>0.20 (90.3)</td>
<td>0.31 (110.6)</td>
</tr>
</tbody>
</table>

Success rate (run time in milliseconds)

Qualitative Results

- The window converges to the target region once a part of target region is captured, otherwise it randomly moves to next location.

Conclusions

We proposed a reinforcement learning approach to template matching.

- **Accuracy/speed**: Our method achieved better matching accuracy with highly competitive search speed.
- **Explorative learning**: Our model jointly learns search path and good image features for matching in a reinforcement learning manner.