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Abstract

Template matching is a fundamental problem in com-

puter vision where the task is to find a region that matches

a given query. The exhaustive nature of the sliding win-

dow approach has encouraged works to reduce the run time

by pruning unnecessary regions. However, such a pruning-

based approach still needs to evaluate the non-ignorable

number of candidates, which leads to a limited improvement

of the balance between speed and accuracy. In this paper, we

propose a deep reinforcement learning approach to predict

efficient search paths from data. Our approach uses both of

the localization-based reward and feature matching quality

to train a CNN-LSTM network, which allows us to jointly

learn the search paths together with deep image features

for matching. Evaluation results demonstrate that our ap-

proach achieves significantly better accuracy than existing

template matching methods, with highly comparable search

speed.

1. Introduction

The task of template matching is to find a part of a ref-

erence image that matches a query image, which is essential

in a wide variety of applications in computer vision research

field such as registration, verification, tracking, compression,

and stitching. A desirable algorithm should be robust and

fast enough; it can find the correct matches under the po-

tential variations such as background clutter, illumination

changes, occlusions, and geometric transformations and de-

formations, within a reasonable time budget.

The straightforward approach would be exhaustive search

with a certain similarity measure such as normalized cross-

correlation (NCC). However, it is often prohibitive due to

the vast number of candidates needed to be evaluated.

Many efforts have been made for improving the search

speed without loosing accuracy. For example, several stud-

ies [6], [9], [12] propose to skip unlikely candidate windows

or pixels that will not change the final result as much as

possible. [5] represents an image by a linear combination of

binary images called slices to enable fast matching. [3] pro-

poses to use best-buddies similarity (BBS) that measures

the similarity between two image regions based on a small

subset of pixel pairs. An extended version of this approach is
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presented in [11]. Overall, these existing methods still need

to evaluate a large number of undesirable candidate regions,

which leads to limited improvement of the balance between

speed and accuracy.

In this paper, we propose a novel approach to template

matching. Our idea is to predict efficient search path from

data, i.e., instead of skipping unlikely windows or pixels as

done in most of the existing methods, we use machine learn-

ing to pick and evaluate only the highly prospective regions

of the reference image. Our method uses a CNN-LSTM net-

work model to sequentially search promising regions over

the reference image that are expected to match the query.

The network is trained through reinforcement learning in an

exploratory manner; explicit supervised information such as

the location of the target regions or class labels is not neces-

sary. Furthermore, our model jointly learns image features

in an end-to-end manner to improve matching accuracy. We

evaluate our method on MNIST and FlickrLogos-32 datasets

and show that it gives remarkable matching accuracy with

comparable to or faster search speed than existing methods.

2. Method

Suppose we are given a pair of a query and a reference

images denoted by Q and R, respectively. Our task is to

localize the target region on R that matches Q. We assume

that the pose of the target region is specified by a linear

transformation Ag on R and denote by R(Ag) the target

region of R determined by Ag. In this paper, We restrict

Ag to be affine transformation, hence Ag ∈ R2×3.

We approach to this task by sequential search. More

specifically, our goal is to determine the sequence of the

poses of the search window {At}Tt=0 on R so that it can cor-

rectly localize the target region R(Ag) with small T , where

T is the length of the sequence. We propose a machine

learning approach using a CNN-LSTM neural network. The

schematic overview of our model is illustrated as in Fig. 1.

Our model consists of two major modules which we call

feature extraction module and localization module, respec-

tively. The basic behavior of our model at each time step t

can be summarized as follows. The feature extraction mod-

ule first extracts the image features of Q and R(At) which

are denoted by f(Q) and f(R(At)), respectively. The sim-

ilarity between Q and R(At) is measured by using these

features. Then the two image features f(Q) and f(R(At))

as well as the current pose of the search window At are fed
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Fig. 1 Overview of our proposed model. Our model has two ma-
jor modules: feature extraction module and localization
module.

to the localization module to determine the next pose of the

window At+1. These two sub-processes are repeated sequen-

tially until the maximum number of iterations T is reached.

We detail the two modules in Sec. 2.1.

Training of our model is somewhat tricky. Since the lo-

calization is performed in a sequential manner and the cur-

rent decision at a time is made depending on all the past

decisions, the quality of the decision at each time step can-

not be evaluated independently from the others. Therefore,

typical supervised or unsupervised learning methods that

assumes i.i.d. samples cannot be applied to our case. Fortu-

nately, the process can be modeled as a partially observable

Markov decision process (POMDP), so the training can be

performed based on reinforcement learning. In this paper,

we propose a reinforcement learning method that can jointly

learn image features as well as search paths (sequence of the

window poses) in a unified framework. Our algorithm is in-

spired by the recurrent attention models which are proposed

for image recognition [1], [2], [8]. Unlike these, our model

is customized to template matching task and designed to

learn image features effectively for similarity matching. An-

other important difference is that ours does not require any

class label information for training. Furthermore, unlike our

recent method [7] that can only learn and estimate the posi-

tion of the target region at a fixed scale, the model presented

in this paper is extended to consider the full affine transfor-

mation of the target. We give the detail of our algorithm in

Sec. 2.2

2.1 Details of Modules

Fig. 1 shows the brief overview of our model. It is ba-

sically a CNN-LSTM model and uses the CNN for feature

extraction and LSTM for localization. We hereafter give the

details of these two major modules one-by-one.

Feature Extraction Module. This module extracts the

image features from Q and R(At). It consists of two iden-

tical fully-convolutional CNNs with the parameters shared;

one for Q and the other for R(At). The CNN is designed to

have a sequence of five Conv-ReLU layers (ReLU activation

after 2D convolutions) followed by a global average pooling.

Localization Module. The main component of the local-

ization module is LSTM that sequentially predicts the next

pose of the window At+1 based on three external inputs

including the two image features f(Q) and R(At) and the

current pose of the window At. These three inputs are con-

catenated to form a single vector and then fed to the LSTM.

The dimension of the pose parameters (transformation) At

is often far smaller than that of the image features (typi-

cally > 128). In order to mitigate this imbalance, At is first

encoded by a linear projection into a pose feature which has

the same dimension as the image feature and then concate-

nated. Another linear projection is applied to the hidden

state ht of the LSTM to predict the next pose of the loca-

tion Ât+1. We assume that At+1 is a stochastic variable

that follows a Gaussian distribution whose mean is given

by Ât+1. More specifically, At+1 is obtained as a sample

from the distribution N (Ât+1, λI) as At+1 ∼ N (Ât+1, λI),

where I is the identity matrix and λ is a hyperparmeter.

The initial pose of the window A0 is determined by a sim-

ilar way used in [1], [2]. Specifically, we first extract the im-

age features of the (down-sampled) global reference image,

f(R), and then feed it to another linear projection which is

analogous to the context network used in [1], [2] to generate

A0.

2.2 Model Training

Let Θ = {θf , θl} be the parameters of the whole model,

where θf and θl are the parameters of the feature extrac-

tion module and the localization module, respectively. We

use reinforcement learning to tune Θ. For notational sim-

plicity, we use st−1 = {{Aτ}t−1
τ=1,Q,R}. The policy of our

model then can be represented as a conditional distribution

π(At|st−1; Θ). Our goal is to maximize the total reward

R =
∑T
t=1 rt w.r.t. Θ, where rt is the reward value at time

t. The expected value of the total reward is given as

J(Θ) = Ep(sT ;Θ)[R], (1)

where p(sT ; Θ) is the probabilistic distribution of sT which

depends on the policy. Although the gradient w.r.t. Θ is

non-trivial, it can be approximately computed by sampling

the sequences of {At, st−1}Tt=1 from the policy in a similar

way to Monte-Carlo approximation, which gives

∇ΘJ(Θ) ≈ 1

M

M∑
i=1

T∑
t=1

∇Θ log π(Ait|sit−1; Θ)Ri. (2)

where M is the number of sample sequences. By using this,

Θ can be iteratively updated through gradient ascent.

Training our model only with reinforcement learning of-

ten makes the prediction results unstable. Hence, we involve

another loss function to improve the stability of the learning

process. Specifically, we require the image features extracted

by the feature extraction module to correctly measure the

similarity between f(Q) and f(R(lt)), i.e., the distance be-

tween the two features should be small for matching pairs

and large for non-matching pairs. To this end, we impose

a loss function which resembles contrastive loss [4] on the

feature extraction module.

L(θf ) =

T∑
t=1

rtd
2 + (1− rt) max{0,m− d}2, (3)

where d = ||f(Q)−f(R(lt))|| and m is a margin. Unlike the

original loss function used in [4], ours uses reward rt to de-

termine the loss value. This is piecewise differentiable w.r.t.
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Fig. 2 Examples of the query-reference pairs used in our experi-
ments.

θf and so can be easily optimized with gradient descent.

3. Experiments

3.1 Datasets

We use two benchmark datasets, MNIST*1 and

FlickrLogos-32*2 [10], in our experiments for evalua-

tion. Examples of the query-reference pairs are shown in

Fig. 2.

MNIST. For our experiments, we prepare two noisy vari-

ations based on the original MNIST dataset. The first

one is Transformed MNIST, in which each reference

image is generated by applying a random affine transfor-

mation (translation, scaling, and rotation) to each MNIST

training image to be of size 80 × 80. The second one is

Transformed-Cluttered MNIST in which each refer-

ence image is generated by adding 9 × 9 patches randomly

extracted from other MNIST training images to random lo-

cations of the Transformed MNIST reference image. All

query-reference pairs are prepared for these two MNIST

variants by assigning a 28 × 28 query image of the same

digit to each of 80 × 80 reference images. The query im-

age is selected from a master set consisting of 10 original

MNIST images. We follow the official split for obtaining

training and testing sets.

FlickrLogos-32. This dataset consists of 2, 240 images of

32 different logos with 70 images per logo. In our experi-

ments, the training and the testing subsets are composed of

2, 000 and 240 query-reference pairs, respectively. Each pair

is generated by considering a logo image in the dataset as

the reference and a tightly cropped logo of the same brand

as the query. In total, we have 32 query images, each cor-

responding to an individual logo. All the reference images

were resized to 80× 80 and the corresponding ground truth

bounding box coordinates are also resized.

For both of the datasets, the query and the correspond-

ing ground truth region are of the same category (digit or

logo) but are not exactly the same, which is more realistic

compared to the traditional template matching scenarios.

3.2 Experimental Setup

Performance Metrics. We evaluate our approach in

terms of accuracy and speed. Given a query and a refer-

ence image, our model outputs a predicted pose of the win-

dow corresponding to a region in the reference image, which

is used to evaluate the accuracy. In particular, an image

matching is considered as being successful if the intersection

*1 http://yann.lecun.com/exdb/mnist/
*2 http://www.multimedia-computing.de/flickrlogos/

Table 1 Success rate.

Dataset
Transformed

MNIST
Transformed -

Cluttered MNIST
Flickr

Logos-32
Ours 0.89 0.85 0.34
MTM [5] 0.51 0.18 0.10
BBS [3] 0.56 0.20 0.31

over union (IoU) between the predicted pose of the window

and the ground-truth window is greater than 0.5.We report

the success rate which represents the ratio of the number

of image pairs with correct matches to all the pairs. The

efficiency is evaluated in terms of two measures. One is the

number of windows evaluated for matching, and the other is

run time required for processing each query-reference pair.

Baselines. We compare our method with two represen-

tative template matching methods, namely BBS [3] and

MTM [5]. Furthermore, the conventional key-point match-

ing methods such as SIFT and BRISK can also be considered

for baseline in future extension of this work.

Learning Configurations. We trained the proposed

model from scratch using Adam with a batch size of 64 for

MNIST and 1 for FlickrLogos-32. The learning rate was

kept in the range [10−4, 10−3] with an exponential decay.

The variance hyperparameter of the Gaussian λ, which is

used for sampling out the next location, is fixed to 0.22. In

the current implementation, the maximum number of iter-

ation T is fixed to 6. In future extension, we are targeting

investigate the balance between the efficiency and the num-

ber of skipped windows by adaptively learning T for each

input pair of query and reference image

Regarding the reward rt in our algorithm is determined

based on the success or failure of the localization at time

t. For MNIST where we have the exact ground truth pose

(Ag), we first decompose the affine matrix into translation,

scale, and orientation factors, and evaluate each separately

by checking whether the absolute error is within a certain

threshold or not; we give +1 if and only if the error is within

the threshold, and 0 otherwise. The thresholds used are

0.5, 0.3, 0.3 for translation, scale, and orientation, respec-

tively. For FlickrLogos-32 where we could not know the

exact ground truth pose, we determine the reward based on

the IoU value and give +1 if and only if it exceeds 0.5.

3.3 Results

For all the datasets, the success rate, the number of win-

dows evaluated, and the run time are reported in Tables 1,

2 and 3, respectively.

Results on Transformed MNIST. First, as can be seen

in the Table 1, the success rate of our method is the best

among all the methods. The gain of our method over the

baselines reaches 0.33 to BBS and 0.38 to MTM. Second,

as shown in Table 2, our model evaluates only 6 candidate

windows to achieve the accuracy, which is clearly fewer com-

pared to those of the other two baseline methods. Looking at

the run time reported in Table 3, although it is not directly

proportional to the number of windows processed since each

3
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Table 2 Number of windows evaluated to localize a query.

Dataset
Transformed

MNIST
Transformed-

Cluttered MNIST
Flickr

Logos-32
Ours 6 6 6
MTM [5] 2809 2809 2809
BBS [3] 6400 6400 6400

Table 3 Average run time in milliseconds.

Dataset
Transformed

MNIST
Transformed-

Cluttered MNIST
Flickr

Logos-32
Ours 3.8 4.0 26.2
MTM [5] 1.1 1.0 5.2
BBS [3] 90.1 90.3 110.6

methods have different computation requirement for every

pixel, ours is competitive to MTM and is much faster than

BBS, while yielding significantly better matching accuracy.

Results on Transformed-Cluttered MNIST. As

shown in Table 1, our method is the best among all the

methods in terms of success rate in matching. BBS and

MTM performs poorly on Transformed-Cluttered MNIST.

MTM first decomposes an image into a set of binary images

and measures the similarity based on these binary bases,

which may be difficult to distinguish the target from the

noisy background. In BBS, the matching between query

and candidate windows is evaluated according to the con-

sistency of the distributions of pixels; two windows were

determined as a matching pair if their pixel distributions in

(x, y,R,G,B) space are similar. This strategy is not effec-

tive on cluttered MNIST where the noise may have the same

underlying distribution as the target. Unlike these two, ours

can accurately localize the query object in just 6 candidate

windows.

Results on FlickrLogos-32. This is the most challenging

dataset because the targets are different from the queries due

to a wide variety of scale changes, viewpoint changes, and

deformations. Table 1 shows that our method outperforms

all the baselines in success rate. Although MTM is faster

than ours, the accuracy is far from satisfactory. When ours

is compared with BBS, they are competitive in terms of suc-

cess rate but ours is sufficiently faster than BBS. These re-

sults suggest that our method better balance between speed

and accuracy, and template matching based on reinforce-

ment learning actually works well on such a real dataset.

Qualitative Results. Figure 3 shows some qualitative re-

sults. It demonstrates the excellent ability of our model in

learning the search path. The results on MNIST datasets

show that despite the increased level of search difficulty due

to clutter, our model still can successfully localize the query

object within a few number of candidate windows evalu-

ated. Similarly, from the FlickrLogos-32 examples, it can

be seen that our method can successfully find the target

logos even if they are heavily different in their colors and

poses. For instance, in the case of the right most exam-

ple, ours successfully localizes the target despite the large

geometric transformation between query and reference im-

ages. Furthermore, in the second example from the left, the

model can successfully localize the target region, despite of

FlickrLogos-32

Query

Search 
Path

Matched
Region

Transformed MNIST Transformed-Cluttered MNIST

Query

Search 
Path

Matched
Region

Fig. 3 Qualitative results. For a given query-reference pair, the
example shows the search path traced by our model in
order to localize the query. The search path is overlaid in
green lines. The red dot indicates the predicted location
at the last time step. The window cropped from the last
attended location is the search output of our model.

starting the search at texture-less region of the image (sky).

This can be possible because our model learned to pick the

next location randomly until a part of the target region is

captured in the search window, once it captured the model

converges rapidly to the target location. However, there are

a few cases when the model can not capture any part of the

reference region within the 6 search iteration and fails to

localize.

4. Conclusions

We proposed a reinforcement learning approach to tem-

plate matching that can jointly learn search path in the form

of a sequence of affine transformations as well as deep im-

age features in an end-to-end manner. Evaluation results

suggested that our approach can achieve significantly bet-

ter matching accuracy than existing methods with highly

competitive search speed.

References

[1] Ablavatski, A., Lu, S. and Cai, J.: Enriched Deep Recur-
rent Visual Attention Model for Multiple Object Recogni-
tion, Proc. WACV (2017).

[2] Ba, J., Mnih, V. and Kavukcuoglu, K.: Multiple Object
Recognition with Visual Attention, Proc. ICLR (2015).

[3] Dekel, T., Oron, S., Rubinstein, M., Avidan, S. and Freeman,
W. T.: Best-buddies similarity for robust template matching,
Proc. CVPR (2015).

[4] Hadsell, R., Chopra, S. and LeCun, Y.: Dimensionality Re-
duction by Learning an Invariant Mapping, Proc. CVPR
(2006).

[5] Hel-Or, Y., Hel-Or, H. and David, E.: Fast template match-
ing in non-linear tone-mapped images, Proc. ICCV (2011).

[6] Korman, S., Reichman, D., Tsur, G. and Avidan, S.: Fast-
match: Fast affine template matching, Proc. CVPR (2013).

[7] Krishna, O., Irie, G., Wu, X., Kawanishi, T. and Kashino,
K.: Learning Search Path for Region-Level Image Matching,
Proc. ICASSP (2019).

[8] Mnih, V., Heess, N., Graves, A. and Kavukcuoglu, K.: Re-
current Models of Visual Attention, NIPS (2014).

[9] Pele, O. and Werman, M.: Accelerating pattern matching or
how much can you slide?, Proc. ACCV (2007).

[10] Romberg, S., Pueyo, L. G., Lienhart, R. and Zwol, R. V.:
Scalable logo recognition in real-world images, Proc. ICMR
(2011).

[11] Talmi, I., Mechrez, R. and Zelnik-Manor, L.: Template
matching with deformable diversity similarity, Proc. CVPR
(2017).

[12] Vinod, V. V. and Murase, H.: Focused color intersection with
efficient searching for object extraction, Pattern Recognition,
Vol. 30, No. 10, pp. 1787–1797 (1997).

4


