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Abstract
Computational models of saliency estimation have been studied in a wide range of research
fields, including visual perception, image processing, computer vision, multimedia, and
their intersections. However, most of them seek to simulate scene viewing by adults only,
and the impact of observer’s age has rarely been considered. In this paper, we quantitatively
analyze age-related differences in gaze landing positions during scene viewing. From the
results, we draw the following three conclusions: child observers focus more on the fore-
ground in a scene, i.e., locations that are near, while elderly observers tend to explore the
background, i.e., locations farther in the scene; adult observers are more explorative than
child and elder ones; and adult observers have significantly lower center bias compared to
child and elderly observers. Based on these observations, we developed a novel computa-
tional model for age-dependent saliency estimation. The prediction accuracy suggests that
our model better fits collected eye-gaze data of observers belonging to different age groups
than several existing models do.

Keywords Saliency · Eye-tracking · Human visual system · Fixation dispersion · Depth
bias

1 Introduction

Owing to the mechanism of selective attention in the human brain, the human visual sys-
tem can pinpoint the most attractive region from large amounts of visual input. This visual
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perception phenomenon has inspired efforts to develop computational models for identify-
ing the most attractive regions within images and videos, which is typically called saliency
estimation, and these models have been widely used in many image processing applications,
including image retrieval [42], object segmentation [16], and target tracking [62].

Significant progress has been made in developing effective saliency estimation meth-
ods. In the late ’90s, Itti et al. [21] proposed one of the first computational models of
perceptual saliency. They based their model on the human bottom-up attention mecha-
nism to detect salient regions in an image by integrating its low-level features, including
orientation, intensity, and color information. Ever since this seminal work, many saliency
models based on the idea of integrating low-level features have been proposed (e.g., [13,
23, 45]). Subsequently, several studies [1, 40] formulated the saliency estimation problem
as object detection/segmentation, and a number of approaches have been proposed along
this line (e.g., [7, 51]) More recently, following the success of deep neural networks such as
convolutional neural networks (CNNs) in image recognition, CNN-based saliency estima-
tion models have been explored [32, 39]. Because they are capable of end-to-end learning,
CNN-based models often outperform those with handcrafted features in terms of estimation
accuracy.

Despite these remarkable advances, almost all previous approaches ignore differences
between observers in attempting to predict a saliency map common to different observers.
Specifically, several studies have suggested that the age of observers has a great impact on
their viewing behaviors [10, 18]. As shown in Fig. 1, children and elderly observers have
a dramatically different experience of visual saliency than adults while exploring the same
scene. Since previous models have been developed and evaluated only with adult gaze data,
it is unclear whether they can be applied directly to predictions for other age groups such as
children and the elderly.

In this paper, motivated by the above observations, we consider the problem of predict-
ing visual attention for observers in three age groups: children, adults, and the elderly. To
this end, we first analyzed age-related differences over the groups in gaze landing positions
while the observers viewed various types of images. Based on our observations in the anal-
ysis, we then developed a novel age-dependent saliency model. Our model is designed to
adapt the scales and weights for the features according to the scene and the observer’s age.
Experimental results suggest that our model can better fit the eye-gaze data of observers

Natural Dataset Man-made Dataset Fractals Dataset
(Computer Generated)

Children Scene Children Scene Children

Adults Elderly Adult Elderly Adult Elderly

Fig. 1 Sample scenes from nature, man-made, and fractals datasets and their heat map generated from the
recorded eye-gaze data of children, adults, and the elderly
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belonging to different age groups than several existing models can. This work is a significant
extension of the study [27] conducted for only one class of nature images.

2 Related work

We first review the available literature on age-related changes in scene-viewing behavior
and then briefly cover existing computational models for saliency estimation.

2.1 Age-related changes in scene viewing

Many studies in psychology and neuroscience have examined the effects of aging on scene-
viewing behavior. While earlier studies focused on analyzing basic developmental changes
in eye-movement control using artificial stimuli [43, 48], more recent ones have examined
the behavior in more realistic settings using natural stimuli [2, 6, 26, 61]. Some of the main
findings can be summarized as follows. Ygge et al. [61] found that the fixation system to
stably control gaze matures with increasing age between 4 to 15 years. Binda et al. [6] and
Kirkorian et al. [26] clarified that the saccade amplitude increases with age, with the peak
value reached between 10–15 years. Açık et al. [2] found that low-level (bottom-up) features
of a scene such as color, luminance, and contrast often guide viewing behavior during the
early stage of life (7–9 years), whereas it is dominated by contextual (top-down) information
in the later stage (more than 72 years old). A series of more recent studies [18, 28, 29,
37] examined the age-impact on eye-gaze behavior of children from four age groups: 8–
10 years old, 6–8 years old, 4–6 years old, and 2 years old. They analyzed the age-impact on
saccade amplitude, fixation duration and the relation between fixation and saccade (ambient
and focal) for artificial stimuli. The results in [18] revealed that fixation duration decreases
while saccade length increases with age.

It has been suggested that changes in viewing behavior with aging may be influenced
not only by low-level characteristics of a scene but also by its high-level characteristics and
changes in the visual function itself. For example, young adults tend to focus on areas closer
to them first and then scan a wider area [15], whereas older adults tend to see more distant
parts of a scene due to presbyopia [53]. The size of the field of view and the control rate
of eye movements usually decreases with age [5, 49], and the width of the area over which
one can turn one’s eyes varies with age. Furthermore, observers in different age groups may
have different prior biases, such as central bias [27].

In this work, we experimentally analyzed several high-level attributes of a scene, includ-
ing depth bias, center bias, and “fixation dispersion” of fixation landing positions, to derive
useful observations for model development.

2.2 Saliencymodels

Tremendous efforts have been made to develop effective computational models of saliency
estimation. The majority of the existing models typically rely on the psycho-physical theo-
ries of human visual attention, such as Treisman’s feature integration theory (FIT) [54] and
Wolfe’s guided search model [60], and can be classified as either bottom-up [3, 13, 21] or
top-down models [19, 23, 30, 32, 45, 47, 56]. Bottom-up models are fully scene-driven and
focus on modeling the correlations between low-level scene features such as color, gradi-
ent, and contrast and the attractiveness of regions in an image. In addition, they often use
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prior information to improve the saliency prediction accuracy. Typical examples are con-
trast prior [8], background prior [62], and compactness prior [63]. Top-down models, on
the other hand, take into account gazing tendencies driven by human intentions and cogni-
tive states of mind, and many of the models in this category [19, 30, 32, 47, 56] combine
low-level features with human intentions through statistical modeling and machine learning
approaches. For both, the common mechanism is to first compute various feature maps and
then fuse the maps into a single final saliency map.

Other than these two types of models, biologically inspired models have been investi-
gated. For example, Wang et al. [58] have proposed a model to simulate human saccadic
paths on nature images based on an information maximization criterion. Along the same
lines, Le Meur et al. [35] have attempted to generate sequences of saccade motions. Berga
et al. [4] have proposed a neurodynamic model of saliency prediction in the primary visual
cortex (area V1 or striate cortex).

In more recent years, many deep learning models have also been proposed [9, 19, 32, 33,
56]. Kümmerer et al. proposed transferring an AlexNet [31] pre-trained for object recogni-
tion to saliency estimation [33]. DeepFix [32] uses location biased convolution to capture
location-dependent factors (e.g., center bias) for improving saliency estimation. ML-Net [9]
introduces a multi-scale architecture to fuse different levels of the convolution feature map
to predict the final saliency map. Rather than learning deep neural networks end-to-end from
scratch, in this paper, we first experimentally uncover the relationship between fixation ten-
dencies and scene characteristics at different ages and build a model based on the findings.
Although various approaches have been investigated, most of them ignore age-dependent
factors. As we have outlined in the previous subsection, despite several examples of cog-
nitive and neurological studies suggesting that age influences gazing tendencies there are,
to the best of our knowledge, only a few age-dependent models for computational saliency
estimation [29, 37]. Even in those studies, however, the datasets were limited to observers
who viewed very specific types of images collected from children’s books or movies such
as cartoon images. Moreover, the focus was only on children and adults, and the behavior
of the elderly was ignored. Unlike these previous arts, in this study, we developed a sim-
ple but effective computational model for predicting saliency maps for age groups covering
children, adults, and the elderly.

3 Dataset

The dataset used in this study was collected by Açik et al. [2]. It is publicly available and
can be retrieved from the shared link1 [59].

3.1 Participants, stimuli, and apparatus

Fifty-eight participants took part in the study: 18 children (age range of 7 to 9 years, mean
age 7.6), 23 adults (age range of 19 to 27 years, mean age 22.1), and 17 elderly people
(age range of 72 to 88 years, mean age 80.6). All participants reported normal or corrected-
to-normal vision. All participants or their parents gave written consent to participate in the
experiment.

1https://doi.org/10.1038/sdata.2016.126

https://doi.org/10.1038/sdata.2016.126
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The study used 192 color images belonging to three different categories “nature”, “man-
made”, and “fractals” (64 images in each category). Nature represents scenes having trees,
flowers, and bushes, without any artificial objects. The man-made category includes urban
scenes such as streets, roads, buildings and construction sites, and fractals are computer-
generated shapes taken from different web databases such as Elena’s Fractal Gallery. All
the image stimuli were randomly ordered to be balanced. All images had a resolution of
1280 × 960. EyeLink-1000 was used to record the gaze in its remote and hand-free mode.

3.2 Eyemovement recording

Eye gaze was recorded while the observers viewed the images displayed for five seconds.
The scene was subsequently replaced by a circular patch, and participants had to determine
if the patch was part of the previous scene or not. This task was included only to maintain
the motivation of participants; thus, the recognition results were not used in the subsequent
analyses. The head position was tracked by using a target sticker placed on each observer’s
head. Observers viewed the stimuli from a distance of 65 cm on a 20-inch LCD monitor dis-
play (width: 40 cm). Fixation and saccades were identified via a fixation detection algorithm
supplied by EyeLink. For more details about data acquisition and pre-processing, see [59].

3.3 Data representation

We generated human fixation and saliency maps from the collected eye-gaze data. For each
age group the human fixation map for an image stimulus was generated by combining the
fixation landing positions of all the observers of the group. Following [55], the ground truth
saliency maps were generated from fixation maps by convolving a Gaussian over fixation
locations by all the observers.

4 Analysis I: necessity of age-dependent saliencymodel

As reviewed in the previous section, previous studies have found that an observer’s age has
a significant impact on the fixation landing positions. However, it is still unclear whether
we really need age-dependent saliency models or not. One straightforward approach would
be to examine the correlation of fixation landing positions between observers belonging to
different age groups. If the correlations were not high enough, it would confirm the need
to build different models for each age group. We adopt yet another, more direct method
in terms of prediction accuracy. Our hypothesis is that, if the fixation landing positions of
an observer in a certain age group are “predictable” by using those of another observer in
a different age group, there will be no significant advantage of preparing age-dependent
saliency models, and vice versa. Therefore, we first analyze the correlations of fixation
landing positions and predictability of the different age-groups.

Method Pearson’s correlation coefficient (CC) is one of the popular measures to evaluate
saliency estimation models [36]. Here, for the correlation analysis, we calculated Pearson’s
CC between fixation landing positions of different age groups. More specifically, for each
given image and collection of fixation landing positions of observers within the same age
group, we first generated one ground truth saliency map for each age group. Then, we
calculated the CC value between the two ground truth saliency maps from two different age
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groups. Finally, we calculated the average CC value for each pair of age groups over all the
images in each image category.

For predictability, we first generated a “source saliency map” and “target fixation set” for
each image. The source saliency map was generated from a single observer’s fixation land-
ing positions by convolving the Gaussian distribution at every fixation point. It was used
to predict a target fixation set, which was made by collecting the fixation landing positions
of all the (other) observers in an age group (Fig. 2). One target fixation set was generated
for each age group so that we could compare the intra- and inter-group predictability. As a
metric to measure the predictability of the target fixation points of an image with the cor-
responding source saliency map, we used area under the curve (AUC), which is frequently
used as an accuracy measure of eye-gaze prediction [34]. Let us denote the source saliency
map on the ith image of the jth observer by Si

j and the corresponding target fixation set for

the xth age group by T i
jx . We compute the AUC score Ai

jx for every pair of Si
j and T i

jx .
The AUC score is computed as done in [34]. Specifically, the source saliency map is thresh-
olded to keep the top α% of salient parts. Then, the target fixation set is mapped onto the
thresholded map, where a fixation point falling into the salient parts is considered as a true
positive (TP), and otherwise a false positive (FP). A TP vs. FP curve is drawn by repeating
the above two steps for various α from 5% to 100%, and then the AUC score is computed
based on the curve. The (observer-level) predictability Pjx for a pair of the jth observer as
a source and the xth group as a target is specifically formulated as

Pjx = 1

N

N∑

i=1

Ai
jx . (1)

OB1

Fixations by rest of observers

(target fixations)

Fixations by one observer

OB2 OB3 OBn

Fixations by all observers  

(same age group)

Source saliency map

Predic�ng target 
fixa�ons by Source 

saliency map

Fig. 2 Procedure to measure inter and intragroup predictability
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If the jth observer is in the xth group, then we call it intragroup predictability, and other-
wise we call it inter-group predictability. We also compute group-level predictability GPxy

between the xth group as a source and the yth group as a target by

GPxy = 1

|X |
∑

j∈X
Pjy (2)

where X is the set of observers belonging to the xth group. The observer-level and group-
level predictability scores are computed for each of the three image categories.

Results Group-level CC values are shown in Table 1, and the observer-level and group-level
predictability scores are shown in Fig. 3 and Table 1, respectively.

From these results, we can make the following key observations.

– In Table 1, most CC values for different age groups are less than 0.70, which implies
that there is a reasonable correlation between the fixation behaviors of different age
groups, but it is not strong.

– In Fig. 3, the children are in better agreement with each other than the adults and elderly
observers (p < 0.001 by one-way ANOVA).

– The diagonal entries in Table 2 are higher than the other entries in the same row, which
suggests that the target fixation set can be best predicted by the source saliency map of
an observer from the same age group.

– The influence of age in Table 2 is independent of the image category (F(2, 192) =
41.39, p < 0.001).

These results suggest that there is a significant difference between fixation patterns
among observers in different age groups. Consequently, we can say that a model developed
for a particular age group might not work well for other age groups, which suggests that we
need an age-dependent saliency model to accurately predict fixations of each age group.

5 Analysis II: Age-dependent features for saliency prediction

The previous section proves the necessity of an age-dependent saliency model. However,
what types of features could be used to capture age-dependent differences in fixation land-
ing positions? In order to identify such features, we consider the center bias, depth bias, and
fixation dispersion and analyze whether these factors actually differ across age groups.

Table 1 Average Pearson’s CC values between ground truth saliency maps of different age groups

slatcarFedam-naMerutaNyrogetaC

Children Adults Elderly Children Adults Elderly Children Adults Elderly

Children 1.0 0.69 0.66 1.0 0.64 0.60 1.0 0.71 0.69

Adults 0.69 1.0 0.63 0.64 1.0 0.63 0.71 1.0 0.66

Elderly 0.66 0.63 1.0 0.60 0.63 1.0 0.69 0.66 1.0
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Fig. 3 Inter-individual predictability for man-made dataset: a AUC score of a participant predicting others
from the same age group. b, c, d AUC score of a participant predicting others from different age group

5.1 Center bias

Center bias has been considered in many eye tracking studies [2, 18, 28], and it improves
the prediction accuracy of computational saliency estimation [24, 29, 37].

However, it is unclear whether there is any age-dependent impact on its tendency, which
we investigate below.

Table 2 Group-level predictability score for children, adults, and elderly in predicting observers of the same
and different age groups for different image categories

Category Nature Man-made Fractals

Source
Target

Children Adults Elderly Children Adults Elderly Children Adults Elderly

Children 0.8390 0.6937 0.7253 0.8483 0.7093 0.7172 0.8579 0.7257 0.7559

Adults 0.7548 0.7874 0.7193 0.7693 0.8085 0.7310 0.7870 0.8037 0.7507

Elderly 0.7432 0.6860 0.8063 0.7410 0.7094 0.8093 0.7693 0.7173 0.8326
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Method Measuring the center bias of an age group is very straight forward. Here, we
first generated an average map for each age group by taking an average of the ground
truth saliency maps over all the images (for the definition of the ground truth map, see
Section 3.3). The resulting maps are shown in Fig. 4a, b, c. We estimated the centriod for
each average map, and, finally, the Euclidean distances between the centroid and center
of an image were measured to reveal the bias of each age group towards the center of the
image. The shorter the Euclidean distance, the higher the center bias.

Another interesting question related to the center bias would be: By using the average
map for a certain age group, is it possible to predict the fixation locations of each observer
in the same age group? If the answer is yes, at least for some age groups, it may be possible
to use the average map as an “age-dependent center map”, instead of the standard age-
independent center map, i.e., a Gaussian distribution with the center of the image as its
mean. Thus, we analyzed how accurately the average map can estimate each observer’s
fixation locations. To this end, we checked whether the fixation landing positions of one
observer in a certain age group could be predicted by the average map of the corresponding
age group in terms of the AUC score used in Section 4 to measure predictability.

Results The center bias showed the following tendencies:

– The children group had the highest center bias with the shortest Euclidean distance
among age groups (150, 203, and 189 for the nature, man-made, and fractals datasets,

(a) Children (b) Adults

(c) Elderly

Pr
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y 
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M
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Nature  
Man-made  
Fractals

0.8

0.76

0.72

0.68

0.64

Children Adults

(d)
Elderly

Fig. 4 Center bias: a, b, c Average (saliency) maps for children, adults and elderly are overlaid on a sample
image. These maps were generated by averaging the ground truth saliency maps of all the images for each
age groups. d Plot showing the predictability of fixation landing positions of an observer in a certain age
group by using the average map computed for the corresponding age group. The y-axis is the average of
the AUC score over all the observers in each age group indicated on the x-axis. Higher AUC means better
predictability
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respectively), whereas the adults had the lowest center bias with the longest Euclidean
distance (210, 267, and 214 for the nature, man-made and fractals datasets, respec-
tively). The result showed that the center bias tendency for elder participants was in
between that for children and adults (184, 244, and 202 for the nature, man-made and
fractals datasets, respectively).

– The results suggest that the age-impact on center bias tendency is independent of the
type of images viewed.

– The results on the predictability are shown in Fig. 4d. They suggest that the average
map for a certain age group could accurately predict the fixation landing positions by
a single observer in the same age-group (F(2, 63) = 34.10, p < 0.001), especially for
the children and elderly groups. The results are consistent across the three image cate-
gories. We can infer from these results that the average map provides an age-dependent
alternative to the standard center map.

5.2 Depth bias

The role of the depth information of a visual stimuli for attention deployment has been
investigated in many studies [15, 22, 38, 44]. Their results showed that the human visual
system tends to focus earlier on objects placed in the foreground than on those in the back-
ground [22]. One question may arise here: Does this tendency hold true for all the age
groups? In order to answer this question, we quantify the depth bias across different age
groups.

Method To measure the depth bias, we labeled the most salient foreground and background
regions in each image stimulus and calculated the percentage of fixations that landed on the
foreground and background regions across all the images.

First, we obtained the most salient foreground and background regions by the following
the steps illustrated in Fig. 5. Specifically, for each image stimulus, we computed an average
map for each age group by collecting the fixation points of all the observers within the same
group (examples of the obtained average maps are shown in Fig. 6) and generated an age-
independent saliency map by linearly integrating the saliency maps of the three groups. We
then applied a threshold to the age-independent saliency map to identify the most salient

Saliency map 

(age-independent)

+ TOP 5% Manual
labelling

Top salient map

Manually labelled

map (ML-map)

Saliency maps

ner
dli

h
C

stl
u

d
A

ylre
dl

E

Fig. 5 Depth bias analysis framework. Depth bias was measured by evaluating the percentage of fixations
landed on foreground and background as labelled in the ML-map



Multimedia Tools and Applications

S�muli Children

Adults Elderly
Fig. 6 Depth bias. Heat maps representing salient locations attended by children, adults, and elderly show
clear impact of age on foreground and background viewing tendency

regions. The result can be seen as the “top-salient map” in Fig. 5. We empirically set the
threshold to five and ten. Finally, we manually labeled the most salient regions as foreground
(“F”) or background (“B”). The labeling was performed by five different annotators, and
the regions that reached consensus across the annotators were retained.

Based on the foreground and background regions, the percentage of the fixations that
landed on either of these locations was computed over all the images.

Results The resulting percentages are shown in Fig. 7, which suggests the following:

– As can be seen in Fig. 7a, the percentage of the foreground regions was significantly
higher for the child observers than for the other two groups. A one-way ANOVA
suggested the significance of the differences (F(2, 19) = 2.99, p < 0.05), and the
post-hoc analysis confirmed that the tendency in children is significantly higher than in
adults and the elderly (p < 0.05).

– As can be seen in Fig. 7b, the percentage of the background regions is significantly
higher for the elderly observers than for children and adults.

A one-way ANOVA confirmed the significance of the differences (F(2, 19) =
3.56, p < 0.03), and the post-hoc analysis revealed that the tendency in the elderly is
significantly higher than in adults (p < 0.03) and children (p < 0.03).
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Fig. 7 Percentage of the gaze that landed on a the foreground and b background. Note that the summation
of the foreground and background values is less than 100%, since a small number of fixation points do not
fall into the selected foreground and background regions

5.3 Fixation dispersion

Previous studies have shown that useful field of view (UFOV), i.e., the area in a scene from
which useful visual information can be extracted, shrinks in older people [5, 12, 50].

Inspired by these results, we measured the spatial scattering of the fixation locations of
each age group. We call this measure “fixation dispersion”.

Method To measure the scatter of fixation locations, we modeled the fixation dispersion as
the first-order entropy of the saliency map, as was done in [28]. Specifically,

H(Si
x) =

∑

l

hi
x(l) log

|hi
x(l)|

hi
x(l)

(3)

where Si
x is the saliency map of the ith image in the group x, and hi

x(l) is the histogram
entry of the intensity value l in Si

x .
Examples of the histograms are shown in Fig. 8a. The higher the entropy, the more widely

scattered the fixation locations, i.e., the behavior can be regarded as more explorative.

Results The results are shown in Fig. 8b–d, which suggests the following tendencies for
the observers:

– There is a significant impact of the observers’ age on the tendency of fixation dispersion
independent from the image category (F(2, 191) = 179.45, p < 0.001).

The post-hoc results showed that the children and elderly observers were less explo-
rative than the adults (p < 0.001), whereas the elderly observers were more explorative
than the children (p < 0.001).

– The age-related differences in fixation dispersion in the three different image classes
suggest that this behavior is independent of the type of stimuli being observed.
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Fig. 8 Age impact on the fixation dispersion tendency. a Histograms of saliency intensity values show a shift
of fixation dispersion from left to right with increasing age. b, c, d Plots of the entropy of fixation landing
positions of all the observers for each image. Higher entropy means more dispersion

5.4 Recommendations for age-dependent saliencymodel

From the results of the analyses above, we make the following recommendations for
designing an age-dependent saliency model.

– First, as observed in our study, the center bias can differ over age groups. One way to
reflect these changes in the age-dependent saliency model would be to use the average
map computed for each age group.

– Second, we saw from the depth bias analysis that the child observers focus more on the
foreground regions, whereas the elderly observers focused more on the background.

This can be incorporated into the age-dependent saliency model by including depth-
dependent feature maps for children and elderly age groups.

– Finally, the analysis of fixation dispersion has shown that children are the least
explorative among the three age groups, whereas adults are the most explorative.

This can be included by choosing a suitable scale of feature maps from finer to
coarser in accordance with the level of the fixation dispersion for the target age group.
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A study has reported a relationship between image resolution (i.e., scale) and fix-
ation distribution [25], which could be considered as supporting this recommendation
from a different viewpoint.

6 Developing age-dependent saliencymodel

Based on the above recommendations, we developed an age-dependent saliency model for
better prediction of saliency maps depending on the target observer’s age.

6.1 Modifications for age-dependent saliency estimation

Our model was obtained by modifying several points of the feature-based model proposed
in [24] based on the recommendations above.

As we mentioned in the related work section, models based on deep neural networks
have attracted attention recently [32, 39, 47, 56], which have mostly been trained with adult
observers’ data. It would be possible to train such a deep model on a dataset of each age
group to obtain a high-quality age-dependent saliency model. One advantage of relying on
a feature-based model like [24] would be that we can avoid having to collect a huge amount
of qualified training data for children and the elderly, which is challenging due to their
physical or health conditions.

Hereafter, we first provide a brief description of the base model [24] and then describe
our modifications.

6.2 Basemodel

The model [24] is designed to predict the saliency map by the weighted sum of multiple
feature maps extracted from the input image or based on top-down knowledge.

The specific feature maps are described as follows.

– Local Energy of Steerable Pyramids. The pyramid sub band was generated in four
orientations and three scales in a way similar to [52]. This is an effective feature for
multi-scale analysis of scenes, which has been widely used in many image processing
studies, ranging from object classification to saliency detection. In total, 13 bands of
scales were used for the steerable pyramids.

– Torralba’s Saliency Map. The output saliency map from Torralba’s saliency
model [46] was used as one of the features.

– Itti-Koch Saliency Map. The three features of the Itti-Koch saliency map [20] –
intensity, orientation, and color contrast – were included.

– Color Information. Red, green, and blue and their probabilities were used as features.
In addition, the probability of each color computed from the color histograms of the
image filtered with a median filter at different scales was used as a feature.

– Horizon Features. Horizon detected by the algorithm reported in [46].
– Objects. The result of automatic object detection has been used in [24] as a high-

level feature. Although “person” and “face” were detected in the original paper [24],
we instead detect “person” and “car”, which are frequently present in our dataset. As
in [24], we use [14, 57] for person and object detection.

– Center Map. A feature map which indicates the distance to the center for each pixel is
used.
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Finally, the feature maps are linearly integrated to compute a single prediction result.
The weights of the feature maps are learned by using linear SVM based on the gaze data of
adults.

6.3 Age-dependent model

We modify the feature maps based on our recommendations.
In short, we introduce a new depth map and center map and adapt all the feature weights

and the scale factors to the tendencies of children, adults, and the elderly.

– Age-dependent Center Map. Instead of using a common center map for all the age
groups as was done in the base model [24], we prepare an age-dependent center map
for each of the three age groups.

The age-dependent center map is computed as described in Section 5.1.
– Depth Map. Unlike the base model, we newly add a depth feature map which is com-

puted as follows. First, we estimate a depth map from the input RGB image using the
algorithm proposed by Liu et al. [41]. An example of the estimated depth maps can be
seen in Fig. 9. Our fixation dispersion analysis in Section 5.3 suggested that the scales
of the feature maps can be tuned for the target age group. Hence, we apply the steer-
able pyramid filters to the depth map to obtain the depth feature map at different scales.
Noteworthy is that this is the first work that brings a depth feature into the context of
age-dependent saliency analysis and prediction.

– Fixation-dispersion-oriented Scale Selection. Age-related differences in the fixation
dispersion tendency are incorporated by selecting different scales of steerable pyramids
for different age groups. More specifically, we empirically split the 13 scale bands
of the steerable pyramids into three groups: band 1 to 4 as Group 1 (finest), band 5
to 8 as Group 2, and band 9 to 13 as Group 3 (coarsest). A preliminary experiment
was conducted to examine all possible combinations of the three groups. The optimal
subsets for each age group are Groups 1, 2, and 3 for adults, Groups 2 and 3 for the
elderly, and Group 3 for children. They are consistent with the recommendation made
on the basis of the analysis results, which states that only a few scales are required
to estimate the gaze landing positions of the less explorative children and elderly, and
conversely, for adults, all the scales should be used.

Original image Depth map

Fig. 9 Input image and its disparity map generated by the algorithm proposed by Liu et al. [41] (black and
white areas represent the nearest and farthest locations in the scene, respectively)
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Fig. 10 Feature maps used in our model (the center-map feature is shown by overlaying it on top of an input
image)

Figure 10 shows an example of feature maps extracted from an input image at different
bands.

Finally, we train the weights of a linear SVM by using the dataset specific to each of the
three age groups.

6.4 Evaluation

We conducted an experiment to analyze the effectiveness of our age-dependent saliency
model.

Evaluation protocol We basically followed the protocol used in [24]. Specifically, for each
image the 10 most salient pixels were randomly chosen from the top 10% salient locations
of the ground truth saliency map as positive samples, and the 10 least salient pixels from
the bottom 70% salient locations were chosen as negative samples. Then, a support vector
machine (SVM) with linear kernels was used to train a classifier on the positive and nega-
tive samples over the set of precomputed image features. In our experiment setup, we split
the dataset with 192 images into 120 training (40 images per image category) and 72 test
sets (24 images per image category). After training the model on the training set, the eval-
uation was performed by using the test set. Specifically, given an input RGB image, the
predicted saliency map was generated by the model. As in [24], we used the AUC scores
to evaluate how well the saliency map estimated by our model can predict the ground truth
map. We compared our model with several existing methods [11, 17, 21, 24]. For a fair
comparison, we created two variants of the base model [24]. In the first variant (Judd-S),
we trained the base model for each age group separately on our training dataset. The sec-
ond variant (Judd-A) was created by training the base model on the combined fixations of
all age groups. Finally, the performance of these two variants was evaluated on our test set
for each age group. We also created two variants of our proposed model to understand the
level of accuracy achievable by simply training the base models on age-specific data and
combined data. Performance was evaluated using the AUC metric as was done in [24].

Results The results are shown in Table 3. The proposed age-dependent model outperformed
the existing saliency models for most of the age groups independent of the image categories.
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Table 3 Comparison of our age-dependent model with existing saliency prediction models. The values in
the table are the AUC scores between the predicted saliency maps and ground truth saliency maps. Taking
values from 0 to 1, higher is better. The best result of each age-groups is reported in bold emphasis

Category Age Itti [21] GBVS [17] Patch [11] Judd-S [24] Judd-A [24] Ours-A Ours-S

Man-made Children 0.72 0.73 0.66 0.73 0.73 0.75 0.74

Adults 0.67 0.67 0.61 0.65 0.66 0.67 0.68

Elderly 0.69 0.71 0.67 0.72 0.70 0.72 0.72

Nature Children 0.62 0.73 0.72 0.76 0.76 0.76 0.77

Adults 0.60 0.67 0.64 0.67 0.67 0.69 0.70

Elderly 0.61 0.73 0.72 0.75 0.75 0.75 0.75

Fractals Children 0.70 0.76 0.71 0.75 0.76 0.76 0.76

Adults 0.66 0.71 0.65 0.69 0.69 0.69 0.71

Elderly 0.68 0.75 0.72 0.75 0.75 0.76 0.76

The best result of each age-groups is reported in bold emphasis

Compared to [11, 17, 21], the performance gain with our method is very high, especially
for the images in the man-made and nature categories. Our age-dependent saliency model
also outperformed the base model [24] not only for the children and elderly groups but also
for adults, which suggests that our modifications, especially including the depth map in the
leaning-based model, works well for adult observes as well.

The quantitative results in Table 3 show that our model has a clear edge over the baselines
for all age groups; however, the significance of this gain is unclear. To better understand the
extent that this gain in performance is reflected in the predicted saliency map of each age
group, we show some sample images with their saliency maps (Fig. 11) computed by our
model and baselines. The results show the excellent ability of our age-dependent saliency
model to predict saliency maps for all the age groups (children, adults, and elderly). For
instance, as shown in the red circle over the second image (second row) in Fig. 11, only
our method can accurately predict the most salient regions across age groups, whereas the
baseline methods severely fails to predict them for not only the children and elderly (which
was expected) but for the adult observers as well.

Ground Truth  

(Children)

Ground Truth  

(Adults)

Ground Truth  

(Elderly)
Ours (Children) Ours (Adults) Ours (Elderly) Itti’s [21] GBVS [17] Patch [11] Judd [24]

Fig. 11 Comparison of the saliency map generated from existing methods and our proposed age-dependent
approach. The red circle overlaid onto the images shows the most salient image regions across observers in
different age-groups
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7 Conclusion

In this paper, we analyzed age-related differences in scene viewing behavior for children,
adult, and elderly observers while they viewed scenes belonging to different categories. The
analysis mainly focused on measuring age-related changes in depth bias, center bias, fixa-
tion dispersion, and inter-individual similarity. The results showed a significant impact of
age on fixation landing positions independent of the category of the scene viewed. Further,
they helped in feature scale selection, depth map insertions, and age-specific learning in our
proposed age-dependent learning-based saliency model.

Our proposed model outperforms the existing saliency models in prediction accuracy for
all the age groups. Predicting which part of a scene observers in different age groups would
pay attention to will be useful in assisting people of different age groups in daily activities
such as online shopping and driving by the elderly. In addition, the recommendations made
from the analysis in the study will be useful in editing movies, books, and advertisement
contents for the target-specific age groups.
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