
Learning Search Path for Region-Level Image Matching
Onkar Krishna, Go Irie, Xiaomeng Wu, Takahito Kawanishi, Kunio Kashino

NTT Communication Science Laboratories, NTT Corporation, Japan

Introduction

● Our task is to find a part of a reference image that matches to a query image.

● A desirable algorithm should be robust and fast.

 Existing methods, e.g., pruning based methods, need to evaluate a large

number of undesirable candidate regions.

● We proposed a deep-reinforcement learning based image matching method.

 Learning efficient search path from data, i.e., use machine learning to pick

and evaluate only the highly prospective regions of the reference image.

 Almost 40x faster than the best competitive baseline!

 Robust to various type of background clutters!

Model Architecture

Our model has feature extraction module and localization module

Feature extraction module

 Extracts the image features from query and reference image region.

 Consists of two identical CNNs with the same parameters which have a

sequence of five Conv-ReLU layers followed by a global average pooling.

Localization module

 Has an LSTM that sequentially predicts the next location based on three

external inputs including two image features and current window location. .

 Determines the initial position in a similar way as done in [1]

This design allows us to jointly learn the search path and effective deep

features for matching!

Overview of Algorithm Behavior

We proposed a reinforcement learning approach for image matching that

sequentially outputs the next location towards the target region in each iteration.

Key feature:

● Fast: Number of candidate windows processed to localize the query is far

smaller than existing methods.

● Robust: Our model is able to localize the query even in severely cluttered

reference images.

References: 

[1] Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu, 

“Recurrent models of visual attention,” in NIPS, 2014.

[2] Artsiom Ablavatski, Shijian Lu, and Jianfei Cai, “Enriched deep recurrent 

visual attention model for multiple object recognition,” in Proc. WACV, 2017.

Results

Quantitative results. Matching is successful if the intersection over union (IoU) 

between the predicted and the ground-truth windows is greater than 0.5,

Ours can localize the query by processing only a few windows; 

[Yacov+, ICCV11] takes 230 ms while ours needs only 6 ms!

Qualitative results. For a given query-reference pair, the example shows the 

search path traced by our model in order to localize the query.

Our method can successfully find the target within only six trials even if 

they are heavily different in their colors and poses!

Conclusion

Query

Reference

Reference image 

Query image

LSTM

CNN

C
N

N

Compare

Step 0. Choose the initial window

based on the global reference image.

Step 1. Compare the features

between the chosen window and the

query.

Step 2. Given the features and the

previous position of the window, the

LSTM determines the next position.

Step 3. If the number of trials

reaches the limit, it terminates and

outputs the final window. Otherwise

back to Step 1.

Learning Strategies

Failure

Failure

Success!

Combination of reward maximization and feature loss minimization

Reward maximization

 Get reward 1 if the window finds

the query, otherwise 0

 Maximize the expected reward by

policy gradient

Feature loss minimization

 If “Success”, close the features

between the window and the

query, otherwise farther

 Contrastive Loss:

𝐿 = ቊ
𝑑 𝑞, 𝑔 If "Success"

max{0,𝑚 − 𝑑 𝑞, 𝑔 } otherwise

𝑑 𝑞, 𝑔 : Euclidian distance between

query 𝑞 reference 𝑔

Dataset

Noisy MNIST (Translated, Cluttered, and Mixed) and FlickrLogos-32

 Query-reference pair is generated by selecting the query to the same digit/logo 

as the reference from a set of centered clean digits/logos.

Dataset Translated Cluttered Mixed FlickrLogos-32

Ours 0.95 (1) 0.91 (3) 0.88 (4) 0.39 (6)

[Yacov+, ICCV11] 0.68 (2) 0.20 (3) 0.15 (5) 0.28 (230)

[Tali+, CVPR15] 0.70 (132) 0.11 (141) 0.08 (148) 0.36 (2390)

Success rate (run time in milliseconds) 


